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Sofia 1784, Bulgaria 

tThe A. N. Frumkin Institute of Electrochemistry, Academy of Sciences U.S.S.R. 
117071 Moscow V-71, Leninski Prospekt 31, U.S.S.R. 

(Received 23 March 1990; accepted 28 April 1990) 

The contribution of flexoelectricity to the curvature elastic modulus for a 
symmetric lipid bilayer is calculated. The cases of permitted and forbidden charge 
exchange between the electrolyte on both sides of the membrane are discussed. On 
the basis of a simplified model of the lipid bilayer, an estimate of the difference of 
the moduli corresponding to these two cases is made. 

1. Introduction 
The influence of the flexoelectric effect on the value of the curvature elastic 

modulus of a membrane has been investigated in several works [I-31. In the first of 
these, assuming that the membrane flexoelectricity is due entirely to  dipoles, situated 
in the dielectric part of the bilayer the flexoelectric effect contribution to the curvature 
elasticity modulus of the membrane was calculated. Winterhalter and Helfrich [2] 
solved the same problem for the case when the flexoelectricity is due only to the double 
layers on both sides of the membrane, without dealing explicitly with a flexocoef- 
ficient. Pelity and Prost [3] consider the electric energy of a layer of a bent smectic with 
a non-zero flexocoefficient. 

The aim of the present work is to take into account the influence of the redis- 
tribution of the electrolyte charges on the bending elasticity of the lipid bilayer. 

2. Definition of the flexocoefficient of a symmetric membrane 
According to Petrov [4], who was the first to deal with the flexoelectric effect in 

membranes, upon deformation the membrane is polarized in the same way as a thin 
layer of a nematic liquid crystal. He also introduced the flexocoefficient as a 
phenomenological quantity. This is the coefficient of proportionality between the 
total curvature of the membrane at a given point and the surface density of the surface 
polarization at this point [4]. Here we define the flexocoefficient through the measur- 
able potential jump AU across the deformed membrane. 

Let us consider a real flat symmetric tension free membrane with negligible 
transverse conductivity. Let the membrane be embedded in an electrolyte, having 
finite conductivity. We restrict our attention to the deformations of the membrane 
having the property of not changing the hydrostatic pressure on both sides. The 
surface inside the membrane, locally retaining its area after this deformation, is called 
neutral surface. We discuss deformations with the property that at  each point of the 
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814 I. Bivas and M. M. Kozlov 

neutral surface its total curvature cto, is contant. Here 

ClO, = Hc1 + c2) 

where 

1 
CI = - 

RI 
and 

1 
c2 = - 

R2’ 
R, and R2 are the radii of the principal curvatures of the neutral surface at  this point. 
The deformations are performed under the condition that there is no exchange of 
charge between the electrolyte on either side. Upon the deformation of the membrane 
a potential AU across the membrane results which can be written as 

f- 

AU = (cI + c2) .  
EO 

The coefficientfdefined in this way is called the flexocoefficient of the membrane. We 
use the expression (cI + c2) instead of +(c,  + c2)  because of tradition authors dealing 
with the flexoelectric as well as the elastic properties of the membrane prefer to use 
this expression). The question arises as to what would happen if (cI + c2) was not a 
constant over the whole membrane. Then the potential AU will depend on the average 
value of (cI + c2) over the whole membrane, i.e. it will not be a local quantity. 

3. Relations between the curvature elastic moduli of the membrane 
and its flexocoefficient 

The expression 

g, = 3k,(CI + c 2 - co)2 + s c , c 2 ,  (2 )  

for the surface density g , of the elastic energy of curvature was proposed by Helfrich 
[5 ]  where co is the spontaneous curvature related to the asymmetry of the membrane, 
k, and kc are the curvature elastic modulus and the saddle splay curvature elastic 
modulus, respectively. We deal only with symmetric membranes, i.e. c,, = 0. This 
expression presupposes that g ,  is a local function of c ,  and c2. We have shown, that 
iff # 0, AU is not a local function of the curvatures. But g, is related to AU and 
should not be local. To avoid this difficulty, we consider here the case of a spherical 
deformation of the membrane, when g, always exists; Then 

CI = c2 = c, (3) 

g ,  = (2k, + kc)c2 (4) 

K = 2k, + kc. ( 5 )  

and we define 

The value of K depends on the conditions under which the membrane is deformed: 

(a) whether the exchange of molecules between the two monolayers comprising 
the bilayer is permitted or not (free and blocked flip-flop); 

(b)  whether the exchange of charge between the two electrolyte media separated 
by the membrane is allowed or not. This exchange can be achieved through 
an outer circuit, connecting the two electrolyte media separated by the mem- 
brane or through the membrane itself due to its finite conductivity. 
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Flexoelectric effect and curvature elasticity 815 

A simple but realistic model of the membrane. It consists of a dielectric layer 1 of thickness d, 
two double layers 2 and part of the electrolyte adjacent to them 3. The boundaries 4 of 
the membrane are parallel to the midplane of the dielectric layer at distances 4 2  from 
it, far enough from the double layers. a, flat membrane; b, the same membrane after its 
spherical deformation with radius of curvature R. 

In the present work we try to describe the two cases in (b). The results obtained are 
valid both for free and blocked flip-flop. 

The quantities referring to prohibited or allowed exchange of charge between the 
two electrolyte media separated by the membrane are denoted by the superscripts u 
and i ,  respectively. One of the aims of this work is to find a proper expression for the 
difference (K" - I?). In order to do this, we use a simplifed but realistic model of the 
lipid bilayer (see the figure). We assume that the bilayer consists of a dielectric part 
having a thickness d and dielectric constant E~ and adjacent to it regions of the 
electrolyte, comprising the double layers on both sides of the membrane. The die- 
lectric part includes the hydrophobic chains of the amphiphilic molecules and the part 
of their hydrophilic heads where the electrolyte cannot penetrate. The neutral surface 
is assumed to coincide with the middle surface of this dielectric layer. The density of 
the ions in the electrolyte is assumed to be sufficiently high. In such a case the 
Debye-Hiickel approximation is valid and the potential V(r) satisfies the linearized 
Poisson-Boltzmann equation in the electrolyte; 

1 
V'(I (~ )  = - b2 V(r), 

where V2 is the laplacian, r is the radius vector measured in a frame of reference with 
an origin coinciding with the centre of the curvature. In addition b is the Debye length 
of the flat double layer, defined by 

I \ I/2 

here E, is the dielectric constant of the electrolyte, ni is the concentration of the ions 
of the i th  kind and zi is the valence of the ions of the i th kind. Let r = Irl; it is 
convenient to introduce a new, auxiliary variable r = r - R,  where R is the radius 
of curvature of the neutral surface and r is the distance of the point with a radius 
vector r to the neutral surface. Then the electric double layers comprise points with 
coordinates (11 > d/2.  If the membrane is spherically deformed when the exchange of 
charge is forbidden some distribution of the three dimensional density of the electric 
charge q"(t, c) will be established. As a result a non-zero transmembrance potential 
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816 I. Bivas and M. M. Kozlov 

drop will be formed. If the exchange of electrolyte charge is permitted it must lead to 
zero equilibrium potential difference between the two regions of the bulk solution 
separated by the membrane. In this case another distribution q'(t ,  c) will appear in the 
electrolyte where 

q ' ( t , c )  = q%c) + Aq(t,c). 

Aq(t, c) will create some contribution AU'(c) to the potential difference across the 
membrane with the property AU'(c) = - AU(c)  where AU(c)  corresponds to the case 
of forbidden exchange of electric charges. When the circuit, connecting the electrolyte 
on the two sides of the membrane, is turned on, some charge a(c) per unit area of the 
bilayer will pass through it after the bending and some energy E will be released due 
to the current associated with this charge. This energy is proportional to the area of 
the membrane. We denote the surface densities of the energies of curvature of the 
membrane in the cases of forbidden and permitted exchange of charges by g: and gf, 
respectively. Then 

AgC = g: - gi = (K" - Ki)C2, (7) 

where AgC is equal to the thermal energy per unit area of the membrance, released in 
the outer circuit after turning it on. This energy is equal to - taAU. In the proposed 
model a is 

For a membrane with S = 1 the thermal energy E, released in the outer circuit is 

This quantity is equal to the difference between the energies of bending for forbidden 
and permitted charge exchange. The value given by equation (9) is always positive. 
This means that the work of bending for permitted charge exchange is less than the 
work for forbidden charge exchange. Comparing equations (7) and (9), we conclude 
that 

The quantity Ec must be the same for the two cases in question because at  pure saddle 
splay deformation (c, + c2 = 0) AU must be zero. Consequently 

P - K' = 2(e - kl )  (1 1) 

and 

4. Discussion 
Equation (12) shows that the bending modulus when charge exchange occurs is 

less in comparison with the binding modulus for forbidden charge exchange. Such a 
result is quite natural because the possibility of transmembrane redistribution of 
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Flexoelectric effect and curvature elasticity 817 

electrolyte charge gives an additional degree of freedom to the system comprising the 
membrane with its two adjacent electrical double layers. After membrane bending this 
degree of freedom allows the relaxation of the energy of the system. Consequently the 
total thermodynamical work needed to bend the membrane will be less than the work 
when this degree of freedom does not exist. 

One of the most convenient ways to estimate experimentally the bilayer bending 
modulus is the analysis of thermal fluctuations of the lipid vesicle structure [6]. In the 
light of the results of the present work the question arises about the type of bending 
modulus measured in these experiments. The characteristic time of the thermal 
fluctuations is quite short (some seconds for giant vesicles with diameters of the order 
of 10 pm) and the transmembrane redistribution of electrical charge is presumably 
impossible. At the same time the lateral charge redistribution on one side of the 
membrane is a very fast process. Such lateral charge redistribution keeps the electrical 
potential constant along each side of the membrane. The mean value of the potential 
difference between the electrolytes inside and outside the vesicle must be equal to zero, 
because the measurement of the amplitudes of the fluctuations is supposed to be made 
a long time after the formation of the vesicle, when electrical equilibrium is already 
attained. The fluctuations of the radius of the vesicle are much less than the radius 
itself. Consequently for each moment of time the averaged value of the curvature over 
the whole vesicle is constant, equal with precision of higher order to the mean vesicle 
curvature, and the potential difference between the inner and outer electrolyte of the 
vesicle does not fluctuate and is equal to zero. As a result the fluctuations of the 
membrane can be considered locally as fluctuations at condition of zero transmem- 
brane potential. Similar effects have been considered in an earlier work [7]. It has been 
shown there that for membrane fluctuations of quasispherical lipid vesicles the lateral 
lipid redistribution effectively replaces the flip-flop exchange between the monolayers. 
In this way we can conclude that the bending modulus measured in the experiments 
with fluctuating lipid vesicles corresponds to the case of free transmembrane charge 
exchange and free flip-flop. 
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